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In the mid-1990s there were interesting “breakthroughs” in the theory of

Genetic Algorithms and Evolutionary Algorithms.

Exact Models ... “Corrections” to Holland’s theories and conjectures.

Theory (and FOGA) was hot.

In the last 10 years,

there is decreased interest in theory from the general EC community.
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o

Sometimes Theory is extremely useful.

But sometimes Theory is like caffeine free diet coke:

Sure, its fun, but what’s the point?

What is the role of theory?

What are some alternative approaches to theory?
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SIMPLE GENETIC ALGORITHM MODEL
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THE SCHEMA THEOREM and EXACT MODELS

Selection Only: P (H, t + intermediate) = P (H, t)f(H)

f̄
.

An Exact Calculation:

P (H, t + 1) = P (H, t)
f(H)

f̄
(1 − pc losses) + pcgains

A Common Version of the “Schema Theorem”:

P (H, t + 1) ≥ P (H, t)
f(H)

f̄

[
1 − pc

Δ(H)

L − 1
(1 − P (H, t)

f(H)

f̄
)

]
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THE SCHEMA THEOREM and EXACT MODELS

An Exact Calculation:

P (i, t + 1) = P (i, t)
f(i)
f̄

(1 − pc losses) + pcgains

The Vose/Liepins Model:

st
i = P (i, t)f(i)/f̄

pt+1
i = (ρi s)T M(ρi s) = P (i, t)

f(i)

f̄
(1 − pc losses) + pcgains
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The function ri,j(k) is used to construct a mixing matrix M where the i, jth

entry mi,j = ri,j(0). This matrix gives the probabilities that crossing strings i

and j will produce S0.

gains

1 − losses 

1 −
 losses 
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Three Problems with Evolutionary Algorithm Theory

Problem 1: Theory versus Practice

The theory does not apply to algorithms that are widely used.

Problem 2: Theory versus Theorems

The theory community deals almost exclusive with theorems as

opposed to developing explanatory ”theory.”

Problem 3: Toy and Artificial Test Problems

Does theory (or empirical results) for a toy problem tell us anything

meaningful about real world problems?
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Problem 1: Theory versus Practice

• Simple Genetic Algorithm

• Evolution Strategies

• CMA Evolution Strategies

• Genetic Programming

• Genitor, Steady-State GAs

• CHC

• Memetic Algorithms

• Parallel Genetic Algorithms

Theory does not cover the most widely used methods.

FOGA Mexico City 2007 –14



In practice, algorithms are customized to fit the problem.

Unique ... Specific ... General ... Black Box

Classes Classes Optimization

<------------------------------------------------->

Do we tie our hands my only considering black box optimization?

No Free Lunch suggests we cannot win at black box optimization.
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Problem 2: “Theorems” versus “Theory”

In Physics, theoretical models are developed to explain physical

phenomena. A “Theory” suggests testable hypotheses.

Our theory is almost all “theorem” based.

Even if we do not develop an overall “theory,” our theoretical (and

empirical) work should embrace more “hypothesis testing.”
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Problem 3: Toy and Artificial Test Problems

This is a problem for both Theory and Empirical Research.

1. Test Functions can be TOO EASY

E.G. ONEMAX, Sphere Functions

2. Test Functions can be TOO HARD

E.G. Random Job Shop Problems, N-K Landscapes

3. Test Functions can be UNREALISTIC

E.G. Deceptive Functions and Trap Functions

(These have theoretical value, but ....)

4. Test Functions can be TOO SPECIALIZED

E.G. MAXSAT: Too many flat plateaus, specialized data structures for

truth value of clauses.

It is true that there are no easy answers.
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What else can we do? (Or encourage.)

3 examples of research mixing theory and practice.

1. Covariance Matrix Adaptation

A Constructive Approach to Theory.

2. Using Markov Models to Model Search Cost.

–Tabu Search and Job Shop Scheduling

–A Genetic Algorithm for the Air Force Satellite Control Network

3. No Free Lunch and SubThreshold Seeking
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CMA Covariance Matrix Adaptation Nikolaus Hansen et al.

A more constructive approach to algorithm design.

Let Z(g+1) be the covariance of the μ best individuals.

Let P(g+1) be the covariance of the evolution path.

The new covariance matrix:

C(g+1) = (1 − ccov)C(g) + ccov

(
αcovP(g+1) + (1 − αcov)Z(g+1)

)

Where ccov and αcov are constants that weight each input.
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CMA Covariance Matrix Adaptation

Let Z(g+1) be the covariance of the μ best individuals (Z=Sample).

Note we sample λ points and keep the μ best. The default is μ = λ/2.

Let P(g+1) be the covariance of the evolution path (P=Path).

In effect, these covariance matrices are using Principal Component Analysis to

determine the direction of maximum variance in both the Sample and the Path.

NOTE: we will not really use the Sample and Path, but rather direction of

movement in the Sample and Path.
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CMA and Principal Components

Given a data set of sample points, we want to perform an

eigenvalue/eigenvector decomposition. The eigenvectors are represented by a

rotation matrix R. Let Λ be the diagonal eigenvalue matrix. Let X represent a

matrix of data vectors. Using PCA we find R and Λ such that

R · XXT = ΛR
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CMA and Principal Components

Why do we need a sample over the best Offspring and over the Path?

The direction of maximum variance over the best offspring may follow the

gradient, or be orthogonal to the gradient and path.

One can partly correct this by using the direction from the centroid of the

parents to the offspring.

The direction of maximum variance over the path helps.

A heuristic related to path length also helps to determine step size.
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The Bias in CMA:

A very strong bias in CMA-ES is the (implicit) assumption that the function is

a bowl (sphere or elipse) or has a global bowl-like (funnel) structure.

So what if we construct very simple functions with 2 bowls or 4 bowls?
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The n x m Job-Shop Scheduling Problem

For the JSP n jobs must be processed exactly once on each of m machines.

Each job i is routed through the m machines in some pre-defined order πi,

where πi(j) denotes the jth machine in the routing order.

Most research considers the problem of makespan minimization.

TABU Search has been the best method to solve JSP for 15 years.
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Cost Models for Job Shop Scheduling: Jean Paul Watson

What accounts for search cost:

1. number of local optima?

2. fitness distance correlation?

3. backbone size?

4. distance to the global optimum? ...

After extensive study, it seems that distance to the global optimum combined

with a thresholding of the local optima were most predictive of search cost.

Plus there was a momentum effective from the Tabu List.
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These models allowed us to construct a simple local search method

that beats TABU Search.
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The Air Force Satellite Control Network processes
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Approximately 500 contacts (requests) a day are scheduled

using 16 groundstations, 2 antemna per station.

A steady state Genetics Algorithm was the best known scheduling method.

How did the GA work?
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These models allowed us to construct a simple local search method

that sometimes beats the GA.
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Schema Processing vs Hill-Climbing
for Evolving Programs

• For Hill-Climbing, we used a (1,10)-ES and (1+10)-ES.

• Mutation:

A subtree is selected and randomly regenerated using ”Grow.”

• We used Sean Luke’s ECJ Implementation.

• All experiments were run for 100,000 evaluations.

• We used 20 runs for each experiment for each problem.
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Test Problems

• Artificial Ant eating food in a 2-D world.

• 11-Multiplexor: a1 a2 a3 b0 b1 b2 b3 b4 b5 b6 b7

• Symbolic Regression: x6 − x4 + x2 sampled from -1 to 1.

• Cart and Pole Balancing

FOGA Mexico City 2007 –44



Comparative Trends

ant multi11 symb pole

(1,10)-ES 14.70 63.60 0.039 193.05

(200,1000)-ES 23.35 85.00 0.052 256.40

(1+10)-ES 21.55 69.60 0.156 276.40

(200+1000)-ES 12.00 79.20 0.034 227.60

Steady State GP t2 1000 15.25 111.70 0.049 214.85

Generational GP t7 1000 16.30 72.00 0.058 249.25

• The (1,10)-ES dominates the two GP methods.

• The (1,10)-ES is a stochastic hill-climber that accepts non-improving

moves.
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NFL: No Free Lunch

All search algorithms are equivalent when compared over all possible discrete

functions. Wolpert, Macready (1995)

Consider any algorithm Ai applied to function fj .

On(Ai, fj) outputs the order in which Ai visits the elements in the codomain

of fj . Resampling is ignored. For every pair of algorithms Ak and Ai and for

any function fj , there exist a function fl such that

On(Ai, fj) ≡ On(Ak, fl)

Consider a “BestFirst” versus a “WorstFirst” local search with restarts. For

every j there exists an l such that

On(BestF irst, fj) ≡ On(WorstF irst, fl)

FOGA Mexico City 2007 –50



Theorem:
NFL holds for a set of functions IFF

the set of functions form a permutation set.

The “Permutation Set” is the closure of a set

of functions with respect to a permutation operator.

(Schmacher, Vose and Whitley–GECCO 2001).
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POSSIBLE POSSIBLE

ALGORITHMS FUNCTIONS

A1: 1 2 3 F1: A B C

A2: 1 3 2 F2: A C B

A3: 2 1 3 F3: B A C

A4: 2 3 1 F4: B C A

A5: 3 1 2 F5: C A B

A6: 3 2 1 F6: C B A
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QUESTION:

How should we evaluate search algorithms?

Let β represent a set of benchmarks.

P (β) is the permutation closure over β.

If algorithm S is better than algorithm T on β...

Then T is better than S on P (β) − β.

This is True in the aggregate, but not on average.
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B

1−P(B)
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On(Ai, fj) ≡ On(Ak, fl)

The metafunction “On” allows us to construct a complementary benchmark

suite βc.

Given Algorithms Ai and Ak, for each problem p ∈ β construct pc ∈ βc such

that

On(Ai, p) ≡ On(Ak, pc)
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A SubThreshold-Seeker

1. Evaluate a sample of points and estimate a threshold(f).

2. Pick point x < threshold(f).

3. If f(x) < threshold(f) then set x = x + 1 and y = x − 1;

Else sample a new random point.

4. While f(x) < threshold(f) set x = x + 1;

5. While f(y) < threshold(f) set y = y − 1;

6. If stopping-conditions not met, goto 2.
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Define a quasi-basin as a contiguous set of points below threshold. Let α

define a threshold presenting some fraction of the search space (less than 0.5).

One way to beat random enumeration is to allocate a majority of sampled

points to locations that are below threshold.

When does a simple bit climber using Binary or Gray Code representation

beat random enumeration?
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Theorem: Given a quasi-basin that spans 1/Q of a search space of size N

and a reference point R inside the quasi-basin, the expected number of

neighbors of R that fall inside the quasi-basin under a standard Binary code

or reflected Gray code is greater than

�(log(N/Q))� − 1

Corollary: Given a quasi-basin below theshold α that spans 1/Q of the

search space and a reference point R that fall in the quasi-basin, the majority

of the neighbors of R under a reflected Gray code representation of a search

space of size N will also be subthreshold in expectation when

�(log(N/Q))� − 1 > log(Q) + 1
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This means that a simple “local search” bit climber can beat random

enumeration when restarted from a subthreshold points as long as on average

�(log(N/Q))� − 1 > log(Q) + 1

Let N = 2100 and assume we want to largely sample a quasi-basin that spans

1/billonth of the space.

�(log(2100/230))� − 1 > log(230) + 1

69 > 31

NOTE: An increase in precision increases �(log(N/Q))� − 1
but does not increase log(Q) + 1.
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Conclusions, Suggestions and Conjectures

• Black Box Optimization may be a lost cause.

• The best method is application specific.

• The next best method is problem class specific.

• Much of what we do is NOT Black Box Optimization.

• It’s the neighborhood stupid!

(with apologies to Bill Clinton and Dave Goldberg.)

• We need a wider view of Theory.

• We need more relevant and practical Theory.
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Answer to the First Question:

I don’t know.
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